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HIGHLIGHTS

» A wind clustering methodology for wind speed reconstruction is presented.

» The method allows long-term reconstruction of daily surface wind series.

» An evolutionary algorithm and a constructive heuristic are presented.

» The method is tested in six meteorological towers at different wind farms in Spain, for the period 1871-2009.
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Accepted 28 November 2012 wind reconstruction with a daily resolution without the need of numerical simulations. Thus, several

soft-computing algorithms are developed, with public domain Sea Level Pressure (SLP) Reanalysis data
as the only input. These algorithms are constructed by tackling an Euclidean distances’ problem at the
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Frequency distributions to obtain several measures of goodness of the method, such as its wind speed estimation uncertainty in
Circulation weather types terms of Mean Absolute Error (MAE) and Pearson correlation (r) for both the wind module and vectorial
Time series reconstructions values. Regarding previous approaches, this statistic downscaling shows an outstanding performance:
Wind speed module estimates produce a MAE of 1.12 m/s (0.32 m/s) in some towers for a daily (monthly)
scale, as r reaches values of 0.78 (daily scale) and 0.91 (monthly scale).
The wind-independent classifications allowed to perform daily surface wind speed and rose recon-
structions in time periods when no wind data are available, which constitutes the main goal of this work.
Thus, a 140 year daily wind reconstruction is performed and analyzed for one tower located at central
Iberia. There, significant low frequency variations are detected, as well as wind speed oscillations in
the 20 y band. Remarkable changes are also identified over reconstructed decadal wind speed frequency
distributions and wind rose. Since long-term wind measurements are rarely available at modern wind
farm sites, such an analysis on centennial reconstructed wind series can represent an appropriate tool
that places the last years of observed wind speed in a climatological perspective.
© 2012 Elsevier Ltd. All rights reserved.
1. Introduction [1,2], energy [3,4], safety [5,6] and environmental management
[7,8]. Particularly, the knowledge of flow conditions at a given loca-
Understanding the wind conditions and variability in a particu- tion and their associated synoptic situations becomes relevant

lar location is of great importance from the point of view of climate when evaluating the efficiency and operability of wind energy
farms [9,10].
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Nomenclature

A set of 8 angular borders

a; a certain angular border

o angle of a certain vectorial flux with respect to the
North

Cre a certain class or WindType, k=1, ..., 26

e;, e original element, mutated element

F, F,, F;  (V.) daily index of geostrophic flux intensity, index at
train and test periods

f coriolis parameter

o] cost function

@, Ap longitude, longitude difference

G, Gy, G, (V.) daily geostrophic flux, geostrophic flux components
(zonal, meridional)

iy, is a certain day of training period, test period

] a certain grid point of the reanalysis SLP field
K number of class or WindType, from 1 to 26
Ay A latitude, latitude difference

statistic mean
MAEy, MAE,y, mean absolute error (vector, module)
N, normalized distribution with =0, 6=1

p probability

Di point of the grid,i=1, ... 16

R a 3 x 8 matrix containing the 3 radial borders of the 8
sectors

R Earth radius

Ti a radial border,i=1,...,3

r Pearson correlation coefficient

2 explained variance

p air density

SF,SZ  southern component of F, Z

T, TOX  a certain tower, X=1,...,6

T, T, Ts a certain time range, training time range, test time
range

V, V,, Vs (V.) daily wind speed, wind speed at train and test peri-
ods

Ve, representative of a certain class or WindType ¢,

WF, WZ western component of F, Z

Z daily index of geostrophic flux vorticity

Q Earth angular speed

case of wind industry, this circumstance becomes a real handicap
when performing a mid to long-term wind farm feasibility layout.
Usually, economic feasibility plans carried out by the electric
industry consider a wind resource evaluation period that rarely
exceeds two years of measurements. Since the atmospheric vari-
ability ranges from the daily cycle to century scales, this period
of in situ wind measurements is clearly too short for providing
information on the low frequency wind variability at the eventual
wind farm, impeding a realistic estimation of the long-term wind
power production and its variability. This problem is usually faced
by harnessing a reanalysis [11,12] numerical model, that charac-
terizes wind by performing dynamic simulations based on all the
available previous meteorological data (meteorological stations,
satellites, radiosondes, etc.). This paper provides a tool capable of
characterizing and estimating daily wind over wide past time
ranges through harnessing only a few years of observational wind
series.

Contrary to observational wind series, information on synoptic
circulation can be extended far back in time. The classification of
a wide spectrum of daily synoptic circulation conditions into a spe-
cific number of patterns allows identifying empirically the under-
lying flow mechanisms influencing the local climate, an issue
that is not possible if only local observational data are considered.
Moreover, since synoptic circulation is also physically related to
local surface wind, this classification allows a particularly accurate
wind characterization if clustering conditions of synoptic circula-
tion are properly established.

Since the 70s of last century, numerous studies have been con-
ducted with the aim of classifying objectively large scale atmo-
spheric circulation patterns, so called Circulation Weather Types
(CWT). The methodology applied to obtain CWT classifications cov-
ers a wide set of possibilities. Initially, subjective manual classifica-
tions were performed on CWT [13] including those considering the
Iberian Peninsula [14]. Jenkinson and Collison [15] developed an
automated CWT classification based on geostrophic flow indexes
derived from Sea Level Pressure (SLP) field. This methodology
was applied also to the British Isles by [16] and to the Iberian Pen-
insula by [17,18]. Several automated CWT methods were imple-
mented through correlation-based techniques [19,20] or [21].

The characterization of different meteorological variables, as
precipitation [22,23] or temperature [24,25] among others have
been possible through CWT techniques. Thus, [26] applied a Cluster

Analysis (CA) to a Principal Components Analysis (PCA) classification
for the obtention of rainfall-related CWT. Approaches in the study
of variations in temperature and precipitation based on artificial
neural networks have been also developed [27,28]. Nevertheless,
with the target of better parameterizing wind conditions, wind-
specific pattern (WP) classifications have been eventually induced
directly from observed wind datasets. Several works have focused
on this topic, such as [29], where a WP classification is performed
by applying a PCA to a wind data set. In turn, [30] applied CA on
temporal similarity. [31,32] implemented an automated Complete
Linkage Algorithm (CLA) to construct a WP classification based on
Euclidean distances within the wind speed space. Later, [33]
included an ad hoc dendrogram algorithm. In [34] a PCA and a CA
were applied to gridded wind reanalysis data. [35] performed both
spatial (CA including CLA and an ad hoc k-means algorithm) and
temporal (CA + PCA) similarity for achieving WP from a real wind
data set, while synoptic pressure patterns were obtained from grid-
ded data. In turn, [36] developed a monthly wind speed estimation
method from the scoring of four SLP modes of variability selected
through a Canonical Correlation Analysis in an attempt to understand
multi-centennial wind speed changes and its association to the se-
lected main circulation modes, obtaining a monthly wind speed
module correlation of 0.7 with respect to observations. Some other
works investigate on direct (i.e. with no classification) wind speed
reconstruction processes. This has been done either through a geo-
strophic wind dataset obtained by interpolation of subjective fore-
cast charts [37], or though statistics-based algorithms. To this
extent, Autoregressive Moving Average Processes (ARMA [38,39]),
Artificial Neural Networks (ANN [40,41]), Support Vector Machine
(SVM [42,43]) and others [44,45] have been implemented.
Usually, papers on CWT methods employ pressure or geopoten-
tial field data for constructing pressure pattern classifications. On
the other hand, most of the WP works obtain the wind patterns
exclusively from observed wind data. In this paper we have devel-
oped a method that, although statistic, is based on the circulation
atmospheric conditions that rule the climate. Specifically, a daily
wind clustering methodology based on the optimization of Euclid-
ean distances of geostrophic flow indices (exclusively derived from
SLP data) is introduced and tested at six different locations in Spain.
This methodology allows to identify dynamic situations that harbor
common wind features, allowing the characterization of their sea-
sonal frequencies and intensities as well as their prevailing direc-
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tions. The Euclidean distances clustering problem (similarly to that
employed by [31,32]) is this time computed through two different
soft-computing algorithms [46],which obtain approximate, yet effi-
cient, solutions when a hard problem with a large amount of possi-
bilities is tackled. Regarding to this, in [47,48] a soft-computing real
wind-dependent classification of SLP patterns is developed. This ap-
proach has been constructed without a discernible dynamic rela-
tionship among them but with an outstanding performance when
validated. The current work departed from the necessity emerged
then to develop a wind-independent classification designed
through any dynamic criteria which could be reflected in the
arrangement of the obtained classes.

Once the wind classifications are obtained through the intro-
duced algorithms (training), the derived patterns are referred and
assimilated to observational wind data through a calibration
experiment, allowing to parameterize each obtained wind class
with a specific real wind-derived vector. Since the geostrophic
indices employed to classify are exclusively obtained from gridded
SLP reanalysis data, the wind vector class-parametrization allows
to characterize wind much beyond where observed wind data is
available, as SLP series embrace a much wider temporal and spatial
range than wind observations. An assessment of the performance
and reliability of the wind classifications’ estimation ability is con-
ducted through a validation experiment (test) over the observa-
tional period, permitting to determine the uncertainties related
to the wind speed estimates, as well as other measures of goodness
as the Pearson correlation values with respect to the observations,
for daily and monthly time scales. This statistic downscaling is
employed to develop long term wind reconstructions beyond the
wind observations’ period. These reconstructions allow the charac-
terization of low frequency multi-decadal wind variability, which
constitutes the main goal of this paper. To this extent, a wind
reconstruction for the last 140 years in central Iberia is presented
and analyzed, in terms of both speed and directional wind features.

In the next sections an exhaustive description of the wind clas-
sification methodology (Section 2) is introduced, and details on the
employed data (SLP and wind observations) are provided (Section
2.4). The results of the paper (Section 3) consider two different
issues on the obtained classifications. First (Section 3.1), the reli-
ability of the developed methodology is assessed through different
measures of goodness, while (Section 3.2) presents and discusses
the annual, decadal and multi-decadal variability of a centennial
wind reconstruction at a meteorological tower in central Spain.
Finally, the main conclusions (Section 4) are presented.

2. F field optimization methodology

This section explains the process followed to construct daily
wind classifications by harnessing SLP gridded data, as well as
the way those classifications are eventually referred to real wind
speed to obtain a reliable wind reconstruction tool.

First, all the considerations leading to the optimization problem
approached in this work are described. Then, specific conditions
and particular features are laid out for the designed algorithms.
After this, the wind statistic downscaling process is explained.
These three points constitute the training part of the method.
Finally, the testing part is described. There, the validation of the
approach with respect to the observations is referred, so that the
wind speed uncertainties as well as other measures of goodness
can be calculated.

2.1. Optimization problem description

The algorithmic architecture within the new methodology
departs from considering the role of the surface pressure field over

surface atmospheric circulation. In this way, the atmospheric
circulation features have been parameterized through two SLP-
directly derived geostrophic indices, F and Z. The first one is
directly proportional to the geostrophic wind speed, while the sec-
ond refers to the absolute geostrophic wind vorticity. In this work
both measures have been obtained through the utilization of grid-
ded SLP data. The specific formulae which relate these indices with
gridded SLP are detailed in Appendix A. Through these relation-
ships F can be considered as a proper proxy [37] for the observed
real wind, V. In turn, vorticity given by Z can provide some comple-
mentary information on characterizing wind conditions when the
flow intensity given by F is weaker than a given threshold.

The procedure followed for the obtention of F and Z in a given
location J harnesses the SLP field in a similar way to that employed
in the weather classification technique developed by [15], referred
hereafter as WT. There, F and Z can be obtained from interpolation
of certain pressure values adjacent to J, when a gridded SLP field is
provided (see Appendix B).

The WT technique has been applied alongside to our methodol-
ogy to be used as a benchmark for our results. The WT is a classi-
fication performed by establishing a set of rules concerning F, Z and
o which lead to the definition of 26 circulation types: eight of them
are pure directional related to the eight wind rose main directions,
two are rotational classes defining pure cyclonic and anticyclonic
patterns respectively, and 16 are considered hybrid classes, pro-
duced by the mixture between pure directional and each one of
the rotational classes. In order to compare our methodology with
the WT approach, our geostrophic flow characterization will also
result into 26 classes.

Unlike WT, the classification criteria of the present methodol-
ogy are based in a problem of dispersion minimization at the F vec-

torial space. Let F,,r=1, ..., 1, be a series of daily F vector calculated
at a given location J, for a given period of time 7,, associated to a
certain class ¢, k=1, ..., n. The new methodology performs an

optimization approach in such a way that the dispersion of the val-
ues F, associated to the classes c is, in average, minimized. This
minimization is implemented by a cost function &, expressed as
follows:

@) = =S5 Fe, ~Fl (1)

T k=lirecy

where i, stands for a generic day of the period considered, and F,
stands for the average of F values within a class c,. This problem
is based in the same geometric concept employed by [31,32] and
others to develop their wind field spatial similarity methods within
their clustering processes. However, in this work the optimization
for the reduction of F dispersion independently from observed wind
data V allows to characterize wind conditions in those points or
time series where no real observations are available.

2.2. Training: F field optimization algorithms

The F cost function optimization problem is faced through two
soft-computing algorithms, which are performed in a given period
of time 7, (r for“Training”) over six grid points near their corre-
sponding meteorological towers in Spain, so called hereafter
TO1-T06. One of the approaches applies an evolutionary comput-
ing method [49], which allows a high computing performance
when a large range of possibilities is considered. In turn, the other
one consists on a greedy [50] algorithm approach, designed in or-
der to obtain an analytical solution for the problem as its results
can be easily compared to those obtained by WT. Through these
algorithms, daily classifications according to the geostrophic wind
conditions set by F can be obtained. Additionally, Z values are also
considered to distinguish among weak flow conditions.
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2.2.1. F field optimization through evolutionary computing (FE)

Evolutionary Computation (EC, [51-53]) is a subfield of artificial
intelligence which considers a set of stochastic and population-
based optimization techniques which are based in the concepts
of genetic evolution [54]. EC tackles problems with a high amount
of possibilities by evolving approximated solutions in a computer,
following certain rules borrowed from natural evolution. Thus, it is
expected to achieve a high performance in the problem of F daily
values’ dispersion minimization. Different evolutionary algorithms
have been applied to many different optimization problems, in a
wide range of applications, such as energy-related [55], short-term
forecasting [56], or financial markets [57] problems.

The iterative procedure of FE is performed by means of an Evo-
lutionary Algorithm (EA), which is an algorithm of the family of EC.
Given an optimization problem, an evolutionary algorithm typi-
cally starts from an initial set of random solutions, group into a
population. These solutions are submitted to a set of evolutionary
operators [54], which evolve and finally retain or dismiss them.
This process is applied repeatedly, in a set of loops called genera-
tions. Individuals are normally selected according to the quality
of the solution they represent, so a fitness operator is applied to
each individual of the population. Hence, the individuals with the
best values of fitness are more likely of being selected for replica-
tion and survival. The selected individuals are reproduced by
means of crossover and mutation operators. While crossover
exchanges some genetic material between two or more individu-
als, mutation changes parts of individuals with a small probability,
avoiding that the algorithm keeps in local minimums. By applying
this iterative procedure, the EA explores the whole space of possi-
ble solutions, as it has shown to be highly efficient in extensive
spaces.

The optimization problem to be tackled by FE consists on the
minimization of the cost function enounced in Eq. (1). The 26 clas-
ses which will define an individual in the F space are sorted into
eight angular sectors and three radial magnitudes per sector. Addi-
tionally, two classes with low overall F values are also defined. Spe-
cifically, the set of conditions to determine the 26 classes is
distributed into eight angular borders A= |ay,...,as,), a;€]0,
360°], which will define eight angular sectors. In turn, every sector
is split into 4 slots by 3 radial magnitudes (rq1 <742 <Tq3), SO that a
matrix R of size [3,8] is defined. The three sectorial classes keep

F Field

Fig. 1. Example of the class-stratification structure performed over the F field by
the FE algorithm, where angular and radial borders are defined.

defined by the three highest slots, as a near-to-zero area is defined
bye the lowest slot of every sector. This area for low F values deter-
mines in turn two classes depending on wether Z is positive (cyclo-
nic calm) or negative (anticyclonic calm). Eventually, all .4 and R
elements are set to be adjusted in each iteration so that a consis-
tent solution is obtained. Fig. 1 shows a result of this stratification
on the F=[WF, SF] space, where WF and SF stand for the F zonal
(from West to East) and meridian (from South to North) compo-
nents. There, each dot represents the daily F vector, in terms of
the origin of the flux.

Each generation can be divided into a series of steps. At each
step, the population is treated by a certain operator. Following,
technical details on the FE operators implemented over a genera-
tion with a population of N individuals characterized by A and R
are described:

(1) Initialization: Each individual in the population is randomly
generated within the margin of the angular borders and
radial magnitudes (i.e. we keep the constraints a; € [0,360°]
and r; € (0,inf).).

(2) Repair: In order to keep the increasing order at both angles
and the radial borders in the encoding, elements are sorted
from the smallest to the largest value.

(3) Fitness: Each individual is associated with a value of fitness
(i.e. performance) obtained from the cost function (Eq. (1)).

(4) Selection: The algorithm selects those individuals whose F
average class-dispersion (or bias) is lower than the popula-
tion’s average dispersion. The rest of individuals will not sur-
vive for the next generation, and they will be replaced by
new elements created through crossover and mutation of
selected individuals.

(5) Crossover: Two individuals from the selected population are
taken at random to generate a new one. The configuration of
the elements of the new individual, for both the vector A
and matrix R, is performed within a multi-point crossover
procedure. In this crossover, each g; an r; from a parent has
a probability of 0.5 of being transmitted to the new
individual.

(6) Mutation: The new individuals have a small probability of
being mutated. For FE this probability is 0.05. The mutation
consists of modifying 50% of the elements from the vector A
and matrix R as:

e =¢€+0.1-N;(0,1) (2)

where e; stands for a given element of A or R before mutation, ¢; is
the element after mutation and N4(0, 1) represents a normalized
Gaussian distribution of random numbers with ¢=0 and o =1.
Note that we keep the constraints a; € [0, 360°] and r; € (0, inf).

For this work, this process has been performed over 3000 gen-
erations for a population of N = 1000 individuals.

As FE employs random sequences at some of its operators, it
works as a non-deterministic application, and it obtains a different
solution each time that it is launched. In this work FE has been
launched 30 times for each one of the six points ] where our meth-
odology has been applied. At each one of them, only the best out-
comes on dispersion minimization are eventually reflected in the
results.

2.2.2. F field optimization by a greedy algorithm approach (FG)

Unlike FE, the F field optimization by a greedy [50] Algorithm
(called hereafter FG) has been conceived to produce an analytical
(i.e. deterministic) solution of the cost function minimization. To
achieve this, FG introduces two differences in the conditions of
the algorithm structure, compared to FE:
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First, the angular borders which determine the classes at the F
space have been kept fixed, so that the defined sectors have been
timed to coincide with the eight cardinal wind rose directions
(similarly to WT). With this, the physical interpretation of the syn-
optic dynamics behind the obtained classes is facilitated.

Second, FG has been set to track the dispersion minimization for
every sector individually. By having fixed the angular borders, this
procedure can be done without implying any loss of performance.
Thus, to fix the three classes at a given sector the algorithm oper-
ates by exploring all the possibilities in the combination of 141, 142
and r, 3 within that sector, with a tracking accuracy of 0.1 m/s. The
rest of the algorithm conditions is similar to that of FE. Hence, the
algorithm conditions are similar to R set in FE, and a 3 x 8 condi-
tion matrix is obtained.

2.3. Observational wind series assimilation and wind speed accuracy
test

With the implementation of these methods, a daily classifica-
tion according to the criteria established to arrange F and Z daily
values is obtained. Now, the 26 obtained patterns are associated
to observational wind series with the aim of parameterizing each
wind class with a specific real wind vector. With this calibration,
each one of the obtained wind types can be characterized accord-
ing to real wind in terms of wind speed and angular configuration.

To attain the speed characterization, the already performed
classification of the set of days i, into 26 classes c, for six different
grid point locations are eventually assimilated into their corre-
sponding daily values of observed wind speed V,=[u, ¢] at the
six meteorological towers TO1-TO6, located near the considered
grid points. In this context, a wind representative V., is defined

-30 -27.5 -25 -22.5 -20 -17-5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5§

for each class as the barycenter, in the space of speed [u, 7], formed
by the wind vectors V, corresponding to the set of days i, € ¢, for a
given period t,. Through this linkage between the daily classifica-
tions and the observed wind, the clustering capability of the ob-
tained classifications can be assessed by measuring the resulting
real wind speed dispersion per class. This can be made in the same
way as the dispersion of F was measured, this is by substituting F
for V in Eq. (1). Additionally, wind speed frequency distributions
can be estimated, this time by considering for each class not only
a representative V, but a complete wind speed distribution com-
puted from the set of all the class-elements wind speeds at the
observational period. Similarly to wind speed, the angular informa-
tion obtained through this observational data assimilation allows
to compute a different wind rose for each one of the obtained pat-
terns, enabling the possibility to estimate the overall wind rose for
a certain period where only SLP information is available.

The vectorial parametrization performed for the wind patterns
allows estimating wind speed in periods when only SLP data are
available. In order to measure the degree of accuracy of this param-
etrization with respect to the real wind values, a validation exer-
cise has been performed over the considered SLP and observed
wind series belonging to a period 7, (s for “Test”) not employed
previously. There, the new set of days, according to their F; and
Zs daily values, are distributed into the 26 classes previously de-
fined at 7,. This data crossing is needed in order to prevent the
overfitting of the method [58]. This validation has been designed
to determine the value of the uncertainty of the wind estimation
capability of the methods. It can be determined by measuring the
differences between the wind representatives V.  defined in t,
and the corresponding values Vs associated with a class c,. This
uncertainty can be defined for each considered tower T through
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Fig. 2. Domain of the employed SLP data set. Squares represent considered grid points as diamonds stand for the position the six towers taken into account.
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the Mean Absolute Error (MAE), which has been applied to the vec-
tor (MAEy) and the module (MAE,y)) values of wind, and can be cal-
culated through these expressions:

1 26
MAE (T) = —> > Ve | = Vil 3)
S cx=liseck
1 26
MAEy(T) = — SN Ve = Vil (4)
S cr=Tisecy

where i; stands for a generic day of the period 7;. These expressions
for the wind speed uncertainties represent a goodness measure for
our methodology and reflect the degree of accuracy reached when
daily wind reconstructions are performed.

By accounting for with these 26 representatives V., the F space
borders configuration, and the F, Z and alpha series for a certain
period where SLP field data is available, it is possible to perform
a reconstruction of the wind conditions for such a period. In
Fig. 3 a fluxogram of the whole process is depicted.

2.4. SLP and observed wind data

Sea level pressure gridded data have been retrieved from the
National Center for Environmental Prediction/National Center for
Atmospheric Research Reanalysis Project (NCEP/NCAR) [11]. They
consist on daily SLP values at 1200 GMT, with a grid resolution
of 2.5 x 2.5 degrees for the period 1948-2009. As it is shown in
Fig. 2, a uniform grid of 15 x 21 grid points (latitude and longitude)
centered on the Iberian Peninsula has been considered. Since SLP
data have not been spatially interpolated, the closest grid point
(J) to a meteorological tower location T has been selected as the
central point on which perform the calculations.

On the other hand, wind speed and direction data from six
meteorological towers distributed throughout Spain (see Fig. 2)

have been considered for the period 1999-2009, so that 7, and T,
comprehend the period 1999-2005 and 2006-2009 respectively.
They consist of ten minute frequency data taken at 40 m height.
Every data element in the series comprises all wind speed and
direction measured values over one day, from 00.00 GMT to
00.00 GMT. Thus, averages over 24 h have been performed to ob-
tain daily average wind speed vectors V.

In order to perform a wind reconstruction back to the 19th cen-
tury, an additional SLP dataset from 1871 to 1947 has been consid-
ered to complement the SLP NCEP/NCAR dataset. It has been
retrieved from the second version of the “Twentieth Century
Reanalysis” Project (hereafter 20CRV2) [12]. 20CRV2 has a spatial
resolution of 2 x 2 degrees, and is based on surface and sea level
pressure observations in spite of radiosonde data. It has been
developed by applying an Ensemble Kalman Filter to the back-
ground “first guess” supplied by an ensemble of 56 forecasts ob-
tained from the GFS prediction model run globally.

3. Experiments and results

This section consists of two main parts. The first one (Section
3.1) focuses on the measures of goodness calculated on the devel-
oped methodology. There, the consistency of the obtained SLP pat-
terns (Section 3.1.1) and the class clustering capability (Section
3.1.2) are analyzed, and the wind speed estimation accuracy (Sec-
tion 3.1.3) in terms of wind speed uncertainty and Pearson corre-
lation are presented and compared to other approaches as WT. In
the second part (Section 3.2) a wind speed (Section 3.2.1) and a
wind rose (Section 3.2.2) reconstruction at TO1 for the period
1871-2009 over central Iberia is carried out by implementing the
vectorial parametrization of the obtained classifications to a
140 year daily SLP dataset.

Reanalysis SLP . »

Method1977

ollison

FG borders
Algorithm

Input Data

FE borders
Algorithm

Wind

26 WindType
Daily Classification
(Training Period)

26 WindType
Daily Classification
20" Century

Observations

(Training Period)

6 WindType
Representatives

Wind 20t Century Wind
Observations MAE Reconstruction with
(Test Period) Wind Error estimations

Fig. 3. Fluxogram of the overall process (for either FE or FG).
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3.1. Wind characterization of the obtained classifications

3.1.1. Intra-class SLP fields consistency

In order to evaluate the consistency of the synoptic situations
associated to the obtained classes, a study on the pressure disper-
sion per grid point has been performed to the different composites
related within the classes c, generated by WT, FE and FG methods.
This has been implemented by assessing the standard deviation ¢
of the obtained SLP values per class and grid point. To do this, a
Monte Carlo analysis was performed by comparing the obtained
o’s to those obtained by a set of 1000 artificially generated classi-
fications whose elements within each class were randomly chosen
(hereafter called RC classification).

To perform a reliable statistical analysis, RC has been configured
with the same amount of elements per class than those classifica-
tions obtained from WT, FG and FE. In Fig. 4 the relative decrease of
the average SLP ¢ obtained for each method versus the average ¢ of
RC are represented for each location. Results show that FE and FG
keep inside each class an overall higher consistency per grid point
compared to WT. Specifically, FG shows the best performance in all
locations, while FE is better than WT in all sites except T03, where
a slight difference (0.3%) takes place. A Chi-square test has been
performed to assess the statistical significance of the SLP disper-
sion reduction. By considering all the grid points of the domain,
the average statistic significance of the SLP dispersion reduction
per grid point, averaged for all six considered locations, is shown
to be larger for the new methods. Thus, the amount of grid points
(%) with a significant (p < 0.95) dispersion reduction was 48, 50 and
56 for WT, FG and FE respectively. These results show a robustness
in FG and FE similar or even higher than WT to explain the synoptic
circulation ruling their classes, specially when a large spatial scale
is considered. These results suggest that the obtained classes are
more unambiguous and better related with V, which implies, apart
from a better characterization of wind, the possibility of develop-
ing important climatic applications, being their analysis beyond
the scope of this paper.

3.1.2. Wind clustering performance

As it has been explained at Section 2, F represents a valid proxy
for the real wind, V. Figs. 5 and 6 show F and V values obtained with
FE (FG showed a similar behavior) for two different locations.
There, each point represents the pointer of the obtained values
for F and V vectors (describing the origin of the flow), at two towers
with so different wind conditions as TO1 and T03. While TO1 can be
representative for the overall behavior of geostrophic circulation
with scarce orographic complexity at central Iberia, TO3 stands
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10 4

for a location with singular and strong local effects. Each box de-
picts F's and their corresponding V's values of the set of days re-
lated to each resulting class, for each one of the 26 classes. From
results at TO1 it can be observed for most classes that F and V show
similar components, only altered by roughness effects. Indeed, the
observed differences between F and V for both FG and FE methods
in all towers can be explained through Ekman effects due to local
surface roughness and orographic causes [59]. This can explain
that, with respect to F, V shows in most of the days a weaker inten-
sity (a 24% smaller in average) and a left tending direction (31° in
average) in the speed space. This behavior corresponds with the
prevalence of the synoptic circulation on the flow conditions. On
the other hand, in TO3 V shows a particular behavior additionally
to Ekman effects, showing some prevailing directions in the east-
ern classes. This particularity can be explained by the existence
of local effects caused by the proximity of the Gibraltar Strait
[60] to the area of study. There, the particular funnel orography ex-
erts a big influence in the direction of flow, promoting the predom-
inance of strong levanters (easterlies).

Although differences between F and V can be larger in TO3 than
in TO1 due to local flow distortions, the turn from F into V evidences
for all the towers an overall capability in both FG and FE methods to
retain similar wind features within elements belonging to a same
class. This clustering capability within V can be measured by calcu-
lating a dispersion measure as the radius of a class, i.e. the average
Euclidean distance to the class representative V.. in the speed
space. Hence, this magnitude can be also derived through Eq. (1)
by employing this time V instead of F. The average vectorial radius
per class is clearly smaller for FG and FE methods, compared to WT,
for the six considered towers. Thus, in average for all towers WT
showed a vectorial radius of dispersion a 12 and a 17% compared
to FG and FE respectively. In turn, FE showed the best performance
in situations with complex orography as T03, with an improvement
of a 18% when compared to WT, while the improvement obtained
by FG reaches a 9%. This can be explained through the fact that FE
is the only method which considers the angular borders as a vari-
able to be adjusted, allowing the predominant directions to be fixed
more accurately. When strictly speaking of wind speed module,
performances are similar. The obtained average distances for all
towers was 1.70 m/s for WT. In turn, FG and FE submitted distances
of 1.40 and 1.38 m/s respectively, a clustering capability more than
23% higher compared to WT.

3.1.3. Wind speed validation test
In this section the wind speed estimation ability of the consid-
ered methods (FG and FE) is analyzed with respect to the observa-

TO1 TO2 TO3

TO4 TOS T06

BWT BFG OFE

Fig. 4. Average decreasing ratio of the SLP field dispersion against a random classification. Histograms show results as spatial averages for each classification versus the mean
SLP dispersion considering a random classification with same number of elements per class.
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Fig. 5. F and V values for each class obtained by the FE algorithm for tower TO1.

tional wind series in terms of two measures of goodness (observed roses are also developed for the test period, so that the angular
wind speed error and Pearson correlation). Additionally, wind configuration accuracy can be qualitatively assessed. By following
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Fig. 6. F and V values for each class obtained by the FE algorithm for tower TO03.

the methodology explained in (2.3), the representative class values at the test period 75 have been cross-linked (to avoid overfitting) so
V., obtained in the training period t, and the observed wind speed that the bias of 7, classification with respect to the observed wind
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speed as well as its Pearson correlation could be estimated. The
values for the bias have been computed in the form of the Mean
Absolute Error for both wind speed (MAEy,) and wind vector
(MAEy) variables, which represent a measure for the wind speed
uncertainty of the performed methods. In addition, Pearson Corre-
lation Coefficients have been calculated for the comparison
between real and reconstructed wind series.

The reconstruction performance of the new methods has been
compared to that obtained by a no-classification (NC), which is an
experiment where the entire wind speed series is treated as a
unique class. Thus, the error obtained with this method can be con-
sidered as an upper bound of the implemented methods’ accuracy.
In addition, MAE values have been also calculated for the surface
wind speed provided by NCEP/NCAR [11] reanalysis itself (W-
NCAR), at the same grid point locations employed for WT, FG and
FE. In order to make the comparison with the other methods reli-
able, a linear regression between W-NCAR wind speed values
and the observed wind has been performed for the 7, period, and
thus the obtained linear coefficients have been applied to the test
period to perform the reconstruction. This has been done since
W-NCAR data sets had not been previously referred to observed
wind speed, while WT FG and FE had done so in the Train-Test
experiment.

In Table 1, results on the obtained MAEs are shown. Among the
considered inputs, our methodology presents the smallest module
and vectorial errors. Thus, FE shows the lowest values for MAEy,
(1.44 m/s) and MAEy (3.77 m/s) in average for the six towers. In
turn, FG presents, respectively, values just a 3 and a 5% higher than
FE. Specifically, FE performs the lowest MAE,y, for all towers, except
for towers TO6 and TO5, where FG is equal and slightly higher than
FE respectively. These exceptions do not occur for MAE,, where FE
values are slightly lower than FG for all towers. Compared to the
rest of the inputs, WT MAEy, is higher than FG for all classifications
in all towers, showing an average error a 25% higher than that
obtained by the F methods, and reaching a 34% higher in TO6,
where the obtained MAEy, scores lowest (1.12 m/s) for both FG
and FE. These values can be compared to those obtained by [42],
which obtains a 37% higher error, [43], with a 1.28 m/s MAEy, in
the best case and [38], where our performance on estimating the
wind speed daily average can be compared to that obtained when
forecasting wind speed with only one hour in advance.

Regarding MAEy, WT lead to values a 13 and a 19% higher in
average than FG and FE respectively. As W-NCAR approach pre-
sented high correlations (0.67) with daily real wind speed module
at the considered towers (see Table 2), it could be considered as
representative for them. However, as it was expected, it is not an

Table 1

Comparison of test results obtained by the Weather Types (WT), F field Simple
Computing (FG) and F field Evolutionary Computing (FE) algorithms for the six daily
wind speed data sets considered. Weighted averages within each entire classification
(26 classes) for both MAE,y, and MAEy are shown. For comparing purposes, values for
W-NCAR are also depicted. In addition, the no-classification (1 class, NC) are also
detailed.

Method TO1 T02 TO3 T04 TO5 TO6 Mean
MAE,y, (m/s)

NC 217 1.79 2.93 2.13 1.87 2.75 227
W-NCAR 232 222 2.57 2.50 2.19 2.04 231
WT 1.65 1.49 1.99 2.55 1.76 1.51 1.82
FG 1.32 1.22 1.83 2.00 1.36 1.12 1.48
FE 1.29 1.18 1.72 1.99 1.37 1.12 1.44
MAEy (m/s)

NC 6.39 6.37 7.96 6.58 6.55 6.37 6.70
W-NCAR 7.85 8.01 6.22 10.65 8.61 6.12 8.10
WT 4.65 4.05 3.97 5.09 4.58 4.26 4.48
FG 4.08 3.50 3.65 4.46 4.10 3.85 3.97
FE 3.99 333 3.40 437 3.9 3.41 3.77

Table 2

Test results for the Pearson Correlations between observed wind speed and values
obtained by WT, FG and FE algorithms for the six towers daily wind speed data sets
considered. Values for W-NCAR are also depicted. In addition, a no-class (NC) and a
direct wind approach (DV) are also shown. The last column stands for the weighted
averages for all six towers.

Method TO1 T02 TO3 TO4 TO5 TO6 Mean
Pearson correl. coeff.

NC 0 0 0 0 0 0 0
W-NCAR 0.67 0.70 0.55 0.63 0.77 0.70 0.67
WT 0.61 0.57 0.65 0.39 0.50 0.52 0.53
FG 0.77 0.73 0.71 0.68 0.72 0.77 0.73
FE 0.78 0.74 0.74 0.68 0.71 0.77 0.73

accurate approach of the wind speed, as no classification based
on dynamic features was set. The highest daily correlation with
real wind is performed by FE and FG, with a similar 6 tower aver-
age value of 0.73. The biggest difference between them is observed
for the TO3 location (that on the Gibraltar Strait), with FE perform-
ing better (0.74) than FG (0.71). In turn, WT shows an average daily
correlation of 0.53, and its highest performance is observed again
on TO3 (0.65). This evidences that the closest performance between
WT and the F methodology occurs where local dynamic effects are
remarkable. MAE results obtained by FE are found to be in the
same order of accuracy than those obtained by [47] also for TO1,
where it is performed a MAE,y; and a MAEy, of 1.37 (a 6% higher than
FE) and 3.73 m/s (a 7% lower than FE) respectively.

A monthly timescale wind speed analysis has been carried out
by averaging wind speed values according to their natural months.
As it was expected, the uncertainty decreased in all extents with
respect to the daily resolution. In overall for all towers, the average
monthly Pearson correlation between observed and estimated
wind speed is 0.81 and the MAE y, scores 0.54 m/s, while the max-
imum performance is reached at TO6 (with an r=0.91) and in T02
(a MAEy, of 0.32 m/s), both by means of FG method. Very similar
results are obtained for FE, while WT showed an average results
for all towers of r=0.55 and MAEy; = 0.81 m/s, moving away from
the F based methods [40], which computed a monthly average esti-
mation from neural networking, performed on a similar level.

Fig. 7 shows two examples on the type of adjustment at daily
and monthly scales of a test reconstruction applied on TO6 through
WT, FG and FE. Fig. 7a shows it along a sample time range of 100
days within 7 period, represented and compared to the real wind
speed test signal. The illustration confirms the higher reconstruc-
tion performances using FG and FE, with an overall better track
than WT with respect to the observed wind. In turn, Fig. 7b shows
the monthly wind speed test reconstruction this time applied
throughout the whole considered instrumental time range (ts + 7,).
There, FG performed best, with a MAE, decreasing until 0.34 m/s.

Wind roses test reconstructions have been performed by FG and
FE for the six considered locations, for 7, period (2006-2009). The
data cross-validation procedure to build the wind rose consisted on
a similar procedure as for wind speed. First of all the wind rose for
each obtained class (frequency and speed) is calculated in the
training 1 period. Then, the weighted average of these roses is
implemented depending on the frequency of each class within
the considered time range (t;). The obtained values are displayed
in Fig. 8, where 16 sector wind rose reconstructions are compared
to the real data in 7, period. Results show a consistent similarity
between real data and the reconstructed series both in wind inten-
sity (color) and wind frequency (shape) for each sector of the wind
rose for both FG and FE methods.

3.2. 1871-2009 Wind reconstruction

An immediate application for the developed Cclassification
methodology is the reconstruction of wind in time periods where
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Fig. 7. 100 days sample (a) of the daily wind speed reconstruction at the 7 period performed by WT, FG and FE methods for TO6 compared to the observed wind speed signal
(from February 9 to May 20, 2006) and monthly (b) observed and estimated wind speed for the period 1999-2009 by the same methods and tower.

no observations are available. In order to analyze the wind condi-
tions in the last century in central Iberia, a daily mean wind recon-
struction for the period 1871-2009 has been carried out. Since FG
and FE present very similar MAEs, only FG method has been em-
ployed. The reason to use FG lies on the clear parametrization of
the dynamic class characterization obtained through it. To perform
the reconstruction, SLP data from 20CRV2 were employed to obtain
a daily classification for the period 1871-1947, as NCEP/NCAR data
was utilized in the same way to obtain those classes within the
1948-2009 period. This split into two different data inputs has
been already performed by [61], arguing that NCEP/NCAR data of-
fered a slightly higher reliability for the period where it is avail-
able. After the 140 year classification was obtained, it was again
related to the observational period wind features, so that every
day could be wind-characterized. Since few local effects are per-
ceived compared to the other towers’ locations, TO1 can be consid-
ered an appropriate representative of the region, so that the
experiment has been performed on that location.

3.2.1. Wind speed reconstruction

Throughout the daily wind speed characterization, a daily
reconstruction was performed for the 1871-2009 period (Fig. 9).
Additionally, the 1-year and the 11-year moving averages with
their corresponding uncertainties were computed for a clearer
comprehension. First of all, a spectral analysis was performed to
the annual average wind speed signal through a Fourier transform,
in order to detect possible low frequency multi-decadal wind vari-
ations. It revealed an statistically significant (p < 0.975) variability
cycle within the 23 year frequency band, obtained also by consid-

ering either the 20CRV2 and the NCAR periods separately. Regard-
ing the wind resource variability, the annual average wind speed
range reaches 1.86 m/s, with a maximum annual wind speed of
7.95m/s and a minimum value of 6.09 m/s. These annual values
imply a relative inter-annual variability higher than 30%. By con-
sidering wind power empirically equivalent to the square of wind
speed [62], this variability entails a wind power output variability
higher than 70%. Finally, a linear fit performed over the whole con-
sidered period shows a slight but statistically significant negative
linear trend of 0.1 m/s every 100 years, which implies, with a wind
speed average of 6.91 m/s, a wind power decrease of about a 3%
every 100 years. These results serve to set the wind farm perfor-
mance reached in the last years into a multi-decadal context, so
that the last period of observations (from 2005) appears located
within a minimum phase of the multi-decadal variability, which
could have led to underestimate the long-term wind speed re-
source in TO1. Further work is under way in order to determine
the possible causes that explain these wind speed changes.

Wind speed variability has also been analyzed by assessing its
changes in frequency distribution, a useful tool, very extended in
wind industry. Since it permits a clear comprehension of the wind
speed behavior at different speed regimes it is employed for
assessing the wind speed resource at a certain location. In this
work we have computed the daily wind speed frequency distribu-
tion at decadal and annual ranges with a 1 m/s resolution for the
whole considered period (1871-2009). In order to provide a bigger
robustness to the reconstructed distributions, in this case the daily
reconstructed wind has been characterized by a complete wind
speed distribution (instead of just the V average), computed from
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Fig. 8. Wind roses obtained by real data assimilation (left), FG reconstruction (center) and FE reconstruction (right) for the six towers available data for the test period.

the whole set of intra class-elements within the observations per-
iod. Special emphasis has been granted to wind speed frequency

distribution at those decades with the highest (1926-1935) and
the lowest (1979-1988) average wind speeds (10). Additionally,
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Fig. 9. 1871-2009 wind speed reconstruction for TO1 performed with FG method. Light gray represents the uncertainty for the 1-yr moving average series, as dark and
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Fig. 10. Reconstructed wind speed frequency distribution for the decadal (gray bars) periods 1926-1935 (a), 1936-1945 (b) and 1979-1988 (c). Green bars represent the
frequency distribution of the year with the highest wind speed average of the decade (1935, 1936 and 1978 resp.), as the magenta ones correspond to that with the lowest
wind speed (1929, 1945 and 1988 resp.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the decade with highest annual wind speed changes (1936-1945)
has been considered. For these three decades, the years with the
highest and the lowest wind averages have been taken into ac-
count with the purpose of detecting possible significant changes.
Fig. 10 shows that decades and years with the highest annual wind
speed averages have longer right tails (i.e. higher frequencies at
higher wind speed ranges) as well as lower frequencies at low
speed ranges. Thus, the decadal distributions regarding the periods
1926-1935 and 1979-1988 where observed to hold statistically
significant (p < 0.95) differences in a Chi-square test of homogene-
ity. Regarding the difference among different speed ranges, annual
distributions with low winds (1945) versus high winds (1936)
showed some remarkable differences. Thus, 1945 showed more
than 30% higher frequency values at the first quartile (3-4 m/s
speed range) of the distribution with respect to 1936. In turn,
1936 presented frequency values 35% higher than 1945 at the third
quartile (8-9 m/s) of the distribution.

3.2.2. Wind rose reconstruction

The same inputs and method than those employed for the wind
speed reconstruction where employed to perform the 16-sector
wind rose reconstruction of the decades of the period 1871-
2009, year per year. Additionally, single year wind roses where
computed for those years with a particularly extreme (high and
low) average wind speed. Results show that wind roses can vary
its morphology at a decadal scale, these differences being remark-
ably bigger at annual scales. Specifically, the SW sector has been
observed to be as the most prevailing sector throughout the whole
period. Regarding the sector variability, it has been observed that
when the annual average wind speed increases above the average,
the SW sector frequency is restrengthened, while N and E direc-
tional quadrants become weakened. Thus, a Pearson correlation
of 0.50 is obtained between SW annual wind average frequency
and speed. These results can be observed also in decadal averages.
In Fig. 11 the wind roses are depicted again for those decades with
the highest (1926-1935), the lowest (1979-1988) and the most
varying decade (1936-1945). There, the frequency of the strongest
sector (SW) is 30% higher during 1936 than in 1945. The maximum
annual differences within the SW sector reached 50% between an-
nual frequencies of years 1962 (min.) and 1968 (max.).

4. Summary and conclusions

In this work a methodology based on geostrophic flow indices
(strictly derived from Sea Level Pressure (SLP) reanalysis data)
has been designed to develop daily surface wind classifications
capable of characterizing wind in a given location as well as statis-
tically downscaling wind speed and wind rose for six wind farm
meteorological towers in Spain. To achieve this, an evolutionary
algorithm (FE) and a greedy-based technique (FG) have been
implemented. Both algorithms worked by minimizing the average
class-dispersion of the Euclidean distance at the geostrophic speed
space. The obtained patterns were then assessed through several
measures of goodness, and validated by associating them with
their corresponding observed wind daily series. This allowed the
methodology to estimate wind speed, providing a measure for its
uncertainty. This downscaling enabled the possibility of perform-
ing long term reconstructions throughout time ranges where no
wind observations were available. Performances obtained by these
approaches have been compared with that of a circulation weather
types technique first introduced in [15] (WT), as well as others as
the NCEP/NCAR directly retrieved u and v wind datasets.

After applying the classification methodology to six different
locations in Spain, an analysis on the synoptic conditions ruling
the obtained classes showed a statistically significant consistency

on the average pressure field dispersion per grid point for the clas-
ses obtained within both FG and FE, being even bigger than those
obtained by WT. This results evidence the ability of the developed
methods to define synoptic circulations associated to them.
Regarding an analysis on the wind clustering ability of the pro-
posed methods, the set of elements of a given class defined only
by the geostrophic wind generally maintained a similar observed
surface wind speed behavior. This consistency within the obtained
wind patterns occurred even when the location of study was
strongly influenced by local circulation effects.

A validation test of the daily wind speed estimation capability
of the introduced methodology was performed in order to measure
its uncertainty through two measures of goodness, its bias and its
Pearson correlation with respect to the observations considered.
Regarding the first one, a wind speed accuracy 25% higher than
that obtained through the WT method was reached. It implied an
average bias (in terms of Mean Absolute Error) for the six consid-
ered locations of 1.44 m/s (FE), reaching a value of 1.12 m/s in
some towers, outperforming other statistic models [38,42,43] In
turn, the accuracy for the vectorial distance (Euclidean radius) in
the speeds’ space showed an average value a 34% higher than
WT. Meanwhile, the Pearson correlation coefficient obtained for
both new algorithms was 0.73 with respect to daily observed wind
speed, a correlation explaining 25% more variance (r*) than WT.
When compared to the surface wind speed directly retrieved from
the u and » variables at the NCEP/NCAR reanalysis dataset, our
methodology largely reduced the speed errors, and the Pearson
correlation improved a 8% the explained variance. In a monthly
scale, the Pearson correlation obtained by our methodology
showed an average value of 0.81, reaching 0.91 in some cases,
while the average wind speed error was 0.54 m/s, with a maximum
accuracy of 0.32 m/s among the considered towers. This perfor-
mance is comparable to that obtained by [40]. By considering these
results and the different features of the two developed methods, it
can be derived that FG results more appropriated to obtain an
analytic and dynamic-consistent result, while FE provides a non-
deterministic but slightly better performance.

Through these new wind classifying methods, a wind recon-
struction of the las 140 years at central Iberia has been performed.
With a daily wind speed uncertainty of 1.29 m/s, it reflected a sta-
tistically significant variability cycle with a frequency of 23 years,
as well as a slight but statistically significant negative linear trend.
In this context, the obtained long-term wind speed reconstruction
revealed a minimum of production in recent years. In turn, the
performed reconstructions of decadal and annual wind speed fre-
quency distributions revealed a statistically significant distribution
difference between high and low wind speed decades, as well as
annual frequency variations of 30% for a wind speed range of 3-
4 m/s (1st quartile) and 35% for a wind speed range of 8-9 m/s
(3rd quartile). Decadal and annual 16-sector wind rose reconstruc-
tions where also performed throughout the considered 140 year
period. Results show some differences within the wind rose mor-
phology when considering different wind speed performances
within annual and decadal scales. In high wind speed periods the
SW sector is observed to strengthen, while N and E sectors become
weakened. Indeed, SW sector frequencies between different years
have been observed to vary up to 30%.

Summarizing, our methodology allows to perform a realistic ap-
proach on wind clustering, characterization and statistic downscal-
ing with daily resolution, by exclusively employing public domain
SLP reanalysis data and with a very low computational cost. Since
the geostrophic wind at synoptic scale has been parameterized
through the designed algorithms, it constitutes, additionally, a sig-
nificant instrument for analyzing the existing connections between
surface wind and general circulation climatology. Thus, in this pa-
per we have developed a downscaling experiment that, although
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statistic, is based on the circulation atmospheric conditions that
rule the climate. In this context, we have shown that the proposed
methodology can be implemented for the reconstruction of cen-
tennial wind series at the wind farm locations, where long-term
wind measures are rarely available. To the best of our knowledge,
such centennial wind reconstructions, with a daily resolution and
without the need of the implementation of a numerical model,
have been computed here for the first time. These wind reconstruc-
tions allowed to analyze changes in the wind speed and direction
low frequency variability, as well as to detect periods with signif-
icant different wind features. For all this, they allow to place the
present wind farm performance in a climatic perspective, enabling
to assess the current state of the wind power production with
respect to its historical signal. Therefore, this new outlook provides
an important contribution for the wind multi-decadal analysis on
the prospects of wind performance variations in upcoming years.
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Appendix A

F and Z are related to the spatial SLP field through the theoret-
ical statements of the geostrophic flow G. Thus, F can be deter-
mined through its relationship with the zonal (G,;) and the
meridian (G,;) components of G in the following terms:

~ 1op _ 1
o= pray™ " prrm ®)
Gy = L P L SF (6)

pof ax "~ pfiR cos(2)Ap

where WF and SF stand for F zonal and meridian components
respectively, 2 and ¢ are the latitude and the longitude of the mea-
sured grid point and A/ and A, their differences. f stands for the
Coriolis parameter, given by the expression f;, = 2Qsin(1) (€2 repre-
sents the angular speed of the Earth), while R is the Earth radius
and p is the density of the air. This shows how F can be determined
by differences of pressure only.

In turn, the relationship with Z and Gy, and hence with SLP field,
as seen in (5) and (6) come out of these expressions:

()G”/izl%:_%wz (7)
dy  RARpfi(A)
0Gy; 1 Av, 1

N Avg _ sz 8
ox 2Rcos(;) Ag Rzpr(A(p) °

where WZ and and SZ represent the Z components produced respec-
tively by the West-East and the the South-North pressure
differences.

Appendix B

The following expressions show how F and Z, calculated for a
given grid point J at a latitude 1 = 40°, can be set exclusively using
the 16 grid point pressure values shown in Fig. 12, through the
following expressions:

1 1

WF:j(Pu +P13)*§(P4 +Dps) ®)
1 1

SFZW{Z(PTFZPQ +P13)—Z(P4+2p8 +P12) (10)

S0

F = \/(WF)? + (SF)® (1)

In turn, for Z these relationships are:
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Fig. 12. Example of the considered SLP grid structure employed in the definition of the F, Z and « indexes at the introduced algorithms for a generic point J.
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sin(40°) 1 1
WZ = Sm(35 ) j(P]s +D6) — Z(Ps +P9)}
_sin(40°) 1
“sin(35) |2 { (Ps +Po) — 5 (P +pz)} (12)
— ; 1( +2 + ) _ 1( + 2P + )
T 20082 (J400) |4 Ds + 2D10 + P1a P Ds + 4Dg + P13
1 1
_Z(P4+2P3+p12)+Z(p3+2p7+p11) (13)

Hence, as Z is a scalar value,
Z=WZ+5Z (14)

Finally, a value for the angle of the F vector direction is obtained as
following:

SF
o = atan WE (15)
References

[1] Conil S, Hall A. Local regimes of atmospheric variability: a case study of
Southern California. ] Climate 2006;19:4308-25.

[2] Palutikof JP, Kelly PM, Davis TD. Windspeed and climatic change. ] Wind Eng
1986;10(4).

[3] Diaf S, Notton G, Belhamel M, Haddadi M, Louche A. Design and techno-
economical optimization for hybrid PV/wind system under various
meteorological conditions. Appl Energy 2008;85(10):968-87.

[4] Oztopal A, Sahin AD, Akgun N, Sen Z. On the regional wind energy potential of
Turkey. Energy 2000;25(2):189-200.

[5] Palutikof JP, Brabson BB, Lister DH, Adcock ST. A review of methods to calculate
extreme wind speeds. Meteorol Appl 1999;6(2):119-32.

[6] Traveria M, Escribano A, Palomo P. Statistical wind forecast for Reus airport.
Meteorol Appl 2010;17(4):485-95.

[7] Green MC, Flocchini RG, Myrup LO. Relationship of the extinction coefficient
distribution to wind field patterns in southern California. Atmos Environ
1992;26:827-40.

[8] Darby LS. Cluster Analysis of Surface Winds in Houston, Texas, and the Impact
of Wind Patterns on Ozone. ] Appl Meteorol 2005;44:1788-806.

[9] Knudsen T, Bak T, Soltani M. Prediction models for wind speed at turbine
locations in a wind farm. Wind Energy 2011;14(7):877-94. SI.

[10] Xydis G, Koroneos C, Loizidou M. Exergy analysis in a wind speed prognostic
model as a wind farm sitting selection tool: A case study in Southern Greece.
Appl Energy 2009;86(11):2411-20.

[11] Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The
NCEP/NCAR reanalysis project. Bull Am Meteorol Soc 1996;77:437-71.

[12] Compo GP, Whitaker ]S, Sardeshmukh PD, Matsui N, Allan R, et al. The
Twentieth Century Reanalysis Project. Quart ] Roy Meteorol Soc
2011;137(654):1-28.

[13] Lamb HH. British Isles weather types and a register of the daily sequence of
circulation patterns 1861-1971. Geophys Memoirs 1972(116).

[14] 1. Font, Climatologia de Espafia y Portugal, Ediciones Universidad de Salamanca
second edition, 422 pp., 2000.

[15] AF. Jenkinson, F.P. Collison, “An initial climatology of gales over North Sea”,
Synoptic Climatology Branch Memorandum no. 62. Meteorological Office:
Bracknell, 1977.

[16] Jones PD, Hulme M, Briffa KR. A comparison of Lamb circulation types with an
objective classification scheme. Int J Climatol 1993(13):655-63.

[17] Trigo RM, DaCamara CC. Circulation weather types and their influence on the
precipitation regime in Portugal. Int J Climatol 2000;20:1559-81.

[18] Spellman G. The application of an objective weather-typing system to the
Iberian peninsula. Weather 2000;55:375-85.

[19] Lund IA. Map-Pattern Classification by Statistical Methods. ] Appl Meteorol
1963;2:56-65.

[20] W. Kirchhofer, “Classification of European 500 mb patterns”, Swiss
Meteorological Institute, Technical Report 43, 1974.

[21] Von Storch H, Zorita E, Cubasch y U. Downscaling of global climate change
estimates to regional scales: an application to Iberian rainfall in wintertime. ]
Climate 1993(6):1161-71.

[22] Goodess CM, Palutikof JP. Developement of daily rainfall scenarios for
southeast Spain using a circuation-type approach to downscaling. Int ]
Climatol 1998;18:1051-83.

[23] Paredes D, Trigo RM, Garcia-Herrera R, Trigo IF. Understanding precipitation
changes in Iberia in early spring: weather typing and storm tracking
approaches. ] Hydrometeorol 2006;7:101-13.

[24] Post P, Truija V, Tuulik ]. Circulation weather types and their influence on
temperature and precipitation in Estonia. Boreal Environ Res 2002;7:281-9.

[25] Jones PD, Lister DH. The influence of the circulation on surface temperature
and precipitation patterns over Europe. Climate Past 2009;5(2):259-67.

[26] Romero R, Summer G, Ramis C, Genoves A. A classification of the atmospheric
circulation patterns producing significant daily rainfall in the spanish
mediterranean area. Int ] Climatol 1999;19:765-85.

[27] Trigo RM, Palutikof JP. Simulation of daily temperaturas for climate
changescenarios over Portugal: a Neural Network Model Aroach. Climate Res
1999:45-9.

[28] Trigo RM, Palutikof JM. Precipitation scenarios over Iberia: a comparison
between direct GCM output and different downscaling techniques. ] Climate
2001;14:4422-46.

[29] Palutikof JP, Kelly PM, Davies TD, Halliday y JA. Impacts of spatial and temporal
wind speed variability on wind energy output. J Appl Meteorol
1987;26:1124-33.

[30] Green M, Flocchini RG, Myrup y LO. Use of Temporal Principal Components
Analysis to Determine Seasonal Periods. ] Appl Meteorol 1993;32:986-95.

[31] Weber RO, Kaufmann P. Automated classification scheme for wind fields. ]
Appl Meteorol 1995;34(5):1133-41.

[32] Kaufmann P, Whiteman CD. Cluster-Analysis Classification of Wintertime
Wind Patterns in the Grand Canyon Region. ] Appl Meteorol
1999:1131-47.

[33] Gomez-Mufioz VM, Porta-Gandara MA. Local wind patterns for modeling
renewable energy systems by means of cluster analysis techniques. Renew
Energy 2002(2):171-82.

[34] Burlando M. The synoptic-scale surface wind climate regimes of the
Mediterranean Sea according to the cluster analysis of ERA-40 wind fields.
Theor Appl Climatol 2009;96:6983.

[35] Jimenez PA, Gonzalez-Rouco JF, Montavez JP, Garcia-Bustamante E, Navarro y
J. Climatology of wind patterns in the northeast of the Iberian Peninsula. Int ]
Climatol 2008(29):501-25.

[36] Garcia-Bustamante E, Gonzalez-Rouco JF, Navarro ], Xoplaki E, Jimenez PA,
Montavez JP. North Atlantic atmospheric circulation and surface wind in the
Northeast of the Iberian Peninsula: uncertainty and long term downscaled
variability. Climate Dynam 2010;38:141-60.

[37] Palutikof JP, Guoa X, Hallidayb JA. Climate variability and the UK wind
resource. ] Wind Eng Indus Aerodynam 1992;39(1-3):243-9.

[38] Torres JL, Garcia A, De Blas M, De Francisco A. Forecast of hourly average wind
speed with ARMA models in Navarre (Spain). Sol Energy 2005;79:65-77.

[39] Morales JM, Minguez R, Conejo A]. A methodology to generate statistically
dependent wind speed scenarios. Appl Energy 2010;87(3):843-55.

[40] Fadare DA. The application of artificial neural networks to mapping of wind
speed profile for energy application in Nigeria. Appl Energy
2010;87(3):934-42.

[41] Barbounis TG, Theocharis JB. Locally recurrent neural networks for long-
term wind speed and power prediction. Neurocomputing 2006;69(4-
6):466-96.

[42] Mohandes MA, Halawani TO, Rehman S, A Hussain A. Support vector machines
for wind speed prediction. Renew Energy 2006;29:939-47.

[43] Bouzgou H, Benoudjit N. Multiple architecture system for wind speed
prediction. Appl Energy 2011;88(7):2463-71.

[44] Li G, Shi J. Application of Bayesian model averaging in modeling long-term
wind speed distributions. Renew Energy 2010;35(6):1192-202.

[45] Barbounis TG, Theocharis JB. A locally recurrent fuzzy neural network with
application to the wind speed prediction using spatial correlation.
Neurocomputing 2007;70(7-9):1525-42.

[46] Zadeh LA. Fuzzy, Logic, Neural Networks, and Soft-Computing. Commun ACM
1994;37:77-84.

[47] Carro-Calvo L, Salcedo-Sanz S, Kirchner-Bossi N, Portilla-Figueras A, Prieto L,
Garcia-Herrera R, et al. Extraction of synoptic pressure patterns for long-term
wind speed estimation in wind farms using evolutionary computing. Energy
2011;36:1571-81.

[48] Carro-Calvo L, Salcedo-Sanz S, Prieto L, Kirchner-Bossi N, Portilla-Figueras A,
Jiménez-Fernandez S. Wind speed reconstruction from synoptic pressure
patterns using an evolutionary algorithm. Appl Energy 2012;89:347-54.

[49] Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans
Evolution Comput 1999;3(2):82-102.

[50] W. Bednorz, “Greedy Algorithms”, IN-TECH, 583 pp., ISBN-13: 978-953-7619-
27-5, 2008.

[51] Goldberg DE. Genetic algorithms in search, optimization and machine
learning. Reading, MA: Addison-Wesley; 1989.

[52] Bdck T, Schwefel HP. An overview of evolutionary algorithms for parameter
optimization. Evolution Comput 1993(1):1-23.

[53] Fogel DB. An introduction to simulated evolution. IEEE Trans Neural Networks
1994:3-14.

[54] Eiben AE, Smith JE. Introduction to evolutionary computing. Springer-Verlag;
2003

[55] Liao CC. Genetic k-means algorithm based RBF network for photovoltaic MPP
prediction. Energy 2010;35(2):529-36.

[56] Jursa R, Rohrig K. Short-term wind power forecasting using evolutionary
algorithms for the automated specification of artificial intelligence models. Int
] Forecast 2008;24:694-709.



46 N. Kirchner-Bossi et al./Applied Energy 105 (2013) 30-46

[57] Y. Liu and X. Yao, “Evolving neural networks for Hang Seng stock index
forecast,” In Proc. of the 2001 Congress on Evolutionary Computation
CEC2001, pp. 256-260, 2001.

[58] Barnett TP, Preisendorfer RW. Origin and levels of monthly and seasonal
forecast skill for United States air temperature determined by canonical
correlation analysis. Monthly Weather Rev 1987;115:1825-50.

[59] E.L. Petersen, L. Troen, S. Frandsen and K. Hedegaard, “Windatlas for Denmark”,
RISO National Laboratory, R-248, 1981.

[60] Dorman CE, Beardsley RC, Limeburner R. Winds in the Strait of Gibraltar. Quart
J Roy Meteorol Soc 1995;121(528):1903-21.

[61] P.D. Jones, C. Harpham and K.R. Briffa, “Lamb weather types derived from
reanalysis products”, International Journal of Climatology, DOI: 10.1002/
joc.3498.

[62] Anderson PM, Bose A. Stability simulation of wind turbine systems. IEEE Trans
Power Appl Syst 1983;102:3791-5.



